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Outline

• Stability of the spin-glass state against temperature perturbation

– Temperature chaos in spin glass state

• Our strategy: Simulation-data analysis

– Eigenmode anlysis of the susceptibility matrix = PCA
– application of the analysis to the SK Ising model

• Short-ranged Ising spin glass model

– Our conclusion :
spin glass states in four dimensions are very sensitive to temperature change.
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Stability or Fragility of the ordered state

• Simplest case： Ising ferromagnetic model below Tc
T
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– An overlap between two valleys

q12 = q21 = −m2(T )
q11 = q22 = +m2(T )

The overlap distribution becomes
trivial delta functions at q = ±m2.

– An overlap between equilibrium
states at T and T + δT

q(T, T +δT ) = ±m(T )m(T +δT ),

varying smoothly with T .

• The ferromagnetic ordered state is usually stable against temperature change.
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Example: Instability of the ordered state against a perturbation

A ground state of 1 dimensional random Ising spin : H(Si) = −∑
Ji,i+1SiSi+1

Does the ground state change by adding a random perturbation term εJ ′i,i+1?

• Ferromagnetic case (Jij = J) is stable when ε < J

• Random system：An overlap correlation vanishes in a large length scale

lim
|i−j|→∞

〈Si(ε)Si(0)Sj(ε)Sj(0)〉 = 0

ε = 0.0

ε = 0.2

• Origin of the perturbation term could be due to temperature change.
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Fragility of the glassy state in disordered Systems
• Stable case

Temperature

Free energy

NO LEVEL CROSSING
The lowest free-energy state at
T ALSO dominates the partition
function at T + δT .

• Unstable case

Temperature

Free energy

LEVEL CROSSING
Temperature chaos as
level crossings

– Temperature Chaos : Stability against temperature perturbation.
The equilibrium states at different temperatures are TOTALLY DIFFERENT.

=⇒ The overlap q(T, T + δT ) is ZERO
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“Chaotic Nature of the Spin-Glass Phase”

A. J. Bray and M. A. Moore: Phys. Rev. Lett. 58, 57 (1987).

D. S. Fisher and D. A. Huse: Phys. Rev. B 38, 386 (1988).

∆F

L

Free-energy difference at T

∆F (T ) = ∆E − T∆S ∼ ΥLθ

θ: stiffness exponent
Υ: T dependent stiffness constant

Change the temperature to T + δT

∆F (T + δT ) ' ∆E − (T + δT )∆S

' ΥLθ − δT∆S.

Entropy difference of the droplet surface

∆S ∼ ±Lds/2: ds: fractal dimension

If ds/2 > θ, ∆F (T + δT ) ' ΥLθ + δTLds/2 can CHANGE the sign.

=⇒ The equilibrium state should change on a length scale L(δT ) ∼ δT
− 1

ds/2−θ .
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Chaos exponent ζ and Stiffness Exponent θ

• Chaos exponent: ζ = ds/2− θ > 0 =⇒ CHAOS . . . . . . . . . . Lyapunov exponent

• Stiffness exponent θ:

– mean-field picture (mean-field model): θ = 0.
– short-ranged SG model in three dimensions: θ ' 0.2. (Numerical estimation)

ds/2 ≥ (d− 1)/2 =⇒ Temperature Chaos likely occurs in SG systems.
T
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Against Temperature Chaos...

• I. Kondor, J. Phys. A 22, L163 (1989)
On chaos in spin glass

• A. Billoire and E. Marinari, J. Phys. A 33, L265 (2000),
Evidences Against Temperature Chaos in Mean Field and Realistic Spin
Glasses

• T. Rizzo, J. Phys. A 34, 5531 (2001),
Against Chaos in Temperature in Mean-Field Spin Glass Models.

• R. Mulet, A. Pagnani, and G. Parisi, Phys. Rev. B 63, 184438 (2001),
Against temperature chaos in naive Thouless-Anderson-Palmer equations

• A. Billoire and E. Marinari, cond-mat/0202473,
Overlap Among States at Different Temperatures in the SK Model.
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Experiment 1: Memory and Chaos Effects in Spin Glasses

J. Hammann, et al : J.Phys.Soc.Jpn. 69 (2000)Suppl. A, 206–211.
(Saclay-Uppsala experiments, 1992)

• Temeprature cycling experiment

• Rejuvenation(Chaos) effect:
long relaxation process at T1 does not play

any role for the relaxation at a different

temperature.

The ordered states seem to depend on

temperature. → Temperature Chaos??

• Memory effect:
The system keeps information that relaxation

has previously been done during the interval

t1 at T1.
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Our strategy: Eigenmode Analysis of susceptibility matrix
• Conventional approach: Overlap between two temperatures T1 and T2 = T1+δT .

– TAP solution (equation of states) in mean-field models:

q′(T1, T2) ≡
[

1
N

∑

i

mi(T1)mi(T2)

]

J

– MC simulation:

q(2)(T1, T2) ≡



〈(
1
N

∑

i

Si(T1)Si(T2)

)2〉

T1,T2




J

• Our approach: Eigenmodes of the susceptibility matrix and their temperature
dependence.

χij =
∂2

∂hi∂hj
F ({hi})

∣∣∣∣
h=0

=
∂

∂hi
〈Sj〉

∣∣∣∣
h=0

= β〈SiSj〉
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Our strategy (2): Eigenmode Analysis of susceptibility matrix

STEP 1: Monte Carlo Simulation

• Perform MC simulation
– use the extended ensemble method to avoid extremely slow relaxation in

random systems.
∗ Multicanonical MC (Berg–Neuhaus)
∗ Simulated tempering (Marinari–Parisi)
∗ Exchange MC (Hukushima–Nemoto, Parallel tempering)

• Generate M spin configurations =⇒ {S1
i }, {S2

i }, {S3
i }, · · · , {SM

i }

STEP 2: Multivariate analysis of the simulation data

• Eigenmode analysis = Principal component analysis (PCA)
• Calculate Susceptibility matrix (or Hamming distance matrix)

Cij = 1
M

∑M
µ (Sµ

i − Si)(S
µ
j − Sj) with Si = 1

M

∑
µ Sµ

i .
• diagonalize the matrix
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Multivariate Analysis of Simulation data

• theory: Eigenmode of the susceptibility matrix in spin glasses.

– A. J. Bray and M. A. Moore, J. Phys. C15 (1982) L765.

• Numerical Examination

– Nemoto-Yamada, Bussei-Kenkyu (Kyoto) 74 (2000) 122.
– J. Sinova, G. Canright and A. H. MacDonald, Phys. Rev. Lett. 85 (2000) 2609.

• Cluster analysis of the simulation data

– E. Domany, G.Hed, M. Palassini and A.P.Young, Phys. Rev. B 64 (2001) 224406.

• Finite mixture,

– Iba-Hukushima, Prog. Theor. Phys. 138 (2000) 462.
– Marinari-Martin-Zuliani, cond-mat/0103534

• Protein, ... PCA
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Application to the SK model 1

Temp. dep of 1st Eigenvalue

λ1/N vs T/J
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• Phase transition :
SG transition is characterized by

χJ
SG = 1

NTrC2.

– disordered phase : λ ∼ O(1)
– ordered phase : λ ∼ O(N)

Temp. dep of 2nd Eigenvalue
λ2/N vs T/J
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1
NTrC = 1

The next largest eigenvalue also has a
finite contribution even in N →∞.
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SG and Ferromagnetic phase in the SK model with N = 128

Eigenvector of the largest eigenvalue at T/J = 0.5 and J0 = 0 and J0 = 1.2.
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Eigenvector corresponds
to the ordering pattern.

• SG phase: random
vector

• F Phase : uniform

Temperature dependence of the largest 5 eigenvalues
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Temperature

Ferromagnetic phase has
a couple of degenerate
eigenmodes.
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Application to the SK model 3

• PCA plot
Histogram of the MC
simulation data projected
onto;

– x axis:
the largest eigenvector

xµ =
∑

i S
µ
i e1st

i

– y axis:
the next largest eigenvector

yµ =
∑

i S
µ
i e2nd

i

• Free-energy landscape?
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...a spin-glass model in finite dimensions.
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Temp. dep. of eigenmode in SG phase : the first eigenvector

4 dimensional ±J Ising EA Model using the dual trick method

Overlap between two eigenvectors

rT0(∆T ) ≡
∣∣∣ 1
N

∑
i e

(T0)
i e

(T0+∆T )
i

∣∣∣
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r(
∆T

)=
1 N

∑
ie

i(1
) (� T

0)e
i(1

) (T
0+

∆T
)

∆T=T−T0

T0/J=1.0=0.5Tc

Tc/J=2.0

L=4
6
8

10

The overlap decreases with increasing L.

Finite size scaling
rT0

(∆T, L) = F (L/Lovl) with

Lovl = ∆T 1/ζ
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∆T

,L�

)

L∆T1/ζ

T0/J=1.0=0.5Tc

ζ=1.3(1)

L=4
6
8

10

rT0
(∆T ) → 0

in the thermodynamic limit(L →∞).

=⇒ Eigenmode (Ordering pattern) significantly depends on temperature.
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The second eigenvector...

4d± J Ising EA Model using the dual trick method

The second eigenvalue is also of
order N , namely Extensive.

Green Overlap of 1st eigenvec.

Red Overlap of 2nd one.
one adjustable parameter for the

scaling axis.

• the same scaling function.

• And, the exponent ζ ' 1.3
agrees with that of bond
perturbation in the same
model (M. Ney-Nifle,PRB57,
492(1998)).

Finite size scaling
rT0

(∆T, L) = F (L/Lovl) with Lovl = ∆T 1/ζ
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About the scaling function...

• The overlap r(∆T ) is unity when
∆T = 0.

• According to Bray-Moore argument,
the deviation from unity, 1 − r(∆T )
is due to a droplet excitation with size
L, whose probability by entropy gain is
expressed as

p ∼ ∆TLds/2

ΥLθ = Lζ∆T
Υ

• When the droplet size is of order of the
system size, the deviation of r(∆T )
becomes O(1). Thus,

1− r ∝ p =
Lζ∆T

Υ

Scaling function 1− r vs Lζ∆T
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f(x) ≡ 1 − r(x) is linear in x = Lζ∆T for

x ¿ 1.
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Summary

• We have investigated the fragility of the spin glass state in four dimensions :

– from an new view point, which is temperature dependence of eigenmode of
the susceptibility matrix (=PCA).

– Using the finite-size scaling, the eigenmode is found to be very sensitive to
the temperature change, suggesting Temperature Chaos

– The value of the scaling exponent ζ is consistent with that obtained by other
perturbation.

– Against ‘the against ...’

∗ F. Krzakala and O .C .Martin, cond-mat/0203449, Eur. Phys. J. B28 (2002) 199.

“Chaotic temperature dependence in a model of spin glasses”.

∗ K. Hukushima and Y. Iba, cond-mat/0207123.

∗ T. Aspelmeier, A. J. Bray, M. A. Moore, cond-mat/0207300, PRL89,(2002) 197202.

“Why temperature chaos in spin glasses is hard to observe”
∗ T.Rizzo and A. Crisanti, PRL 90, (2003) 137201.

“Chaos in Temperature in the SK model”... 9th order perturbation theory.
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