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Outline

e Stability of the spin-glass state against temperature perturbation

— Temperature chaos in spin glass state

e Our strategy: Simulation-data analysis
— Eigenmode anlysis of the susceptibility matrix = PCA
— application of the analysis to the SK Ising model

e Short-ranged Ising spin glass model

— Our conclusion :
spin glass states in four dimensions are very sensitive to temperature change.
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Stability or Fragility of the ordered state

e Simplest casel] Ising ferromagnetic model below T

— An overlap between two valleys

¢'2 = ¢®' = —m(T)
¢!t = ¢22 = +m2(T)

The overlap distribution becomes
trivial delta functions at ¢ = +m?.

State 2 — An overlap between equilibrium
states at 7" and 1"+ 07T’
——————————— T+sT
_______ - T q(T, T+6T) =tm(T)m(T+0T),

varying smoothly with T'.

e The ferromagnetic ordered state is usually stable against temperature change.
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Example: Instability of the ordered state against a perturbation
A ground state of 1 dimensional random lIsing spin : H(S;) = — > J; i+15:5i+1

Does the ground state change by adding a random perturbation term €J7L/,i+1?

e Ferromagnetic case (J;; = J) is stable when e < J

e Random system[] An overlap correlation vanishes in a large length scale

lim (Si(€)S:(0)S;(¢)S;(0)) = 0

|i—j|—00
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e Origin of the perturbation term could be due to temperature change.

e = 0.0
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Fragility of the glassy state in disordered Systems
e Stable case

1 Free energy

______ NO LEVEL CROSSING
———:j:::::—::::: The lowest free-energy state at
[ - T ALSO dominates the partition
/ function at 1"+ 07T

Temperature

1 Free energy
\\/\VA/ LEVEL CROSSING

e Unstable case

-

—
-

Temperature chaos as
level crossings

Temperature

— Temperature Chaos : Stability against temperature perturbation.
The equilibrium states at different temperatures are TOTALLY DIFFERENT.
— The overlap ¢(T,T + 6T) is ZERO
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“Chaotic Nature of the Spin-Glass Phase”

A. J. Bray and M. A. Moore: Phys. Rev. Lett. 58, 57 (1987).
D. S. Fisher and D. A. Huse: Phys. Rev. B 38, 386 (1988).

Free-energy difference at T’
AF(T)=AE —TAS ~ YLY
0: stiffness exponent

o t AF T: T dependent stiffness constant
"""""" Change the temperature to 1"+ 0T

AF(T 4+ 0T) ~ AE— (T +6T)AS

/ ~ TYTLY - §TAS.
Entropy difference of the droplet surface
— AS ~ +L4%/2. (.. fractal dimension

if ds/2 > 0, AF(T + 6T) ~ YL + 6T L%/2 can CHANGE the sign.

1
— The equilibrium state should change on a length scale L(6T") ~ 6T ds/2-9.
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e Chaos exponent: ( = d,/2 — Lyapunov exponent

e Stiffness exponent 6:

— mean-field picture (mean-field model): 6 = 0.
— short-ranged SG model in three dimensions: 6 ~ 0.2. (Numerical estimation)

ds/2>(d—1)/2 — | Temperature Chaos likely occurs in SG systems.
&
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Against Temperature Chaos...

e |. Kondor, J. Phys. A 22, L163 (1989)

On chaos 1 spin glass

e A. Billoire and E. Marinari, J. Phys. A 33, L265 (2000),
FEvidences Against Temperature Chaos in Mean Field and Realistic Spin
Glasses

e T. Rizzo, J. Phys. A 34, 5531 (2001),
Against Chaos in Temperature in Mean-Field Spin Glass Models.

e R. Mulet, A. Pagnani, and G. Parisi, Phys. Rev. B 63, 184438 (2001),
Against temperature chaos in naive Thouless-Anderson-Palmer equations

e A. Billoire and E. Marinari, cond-mat/0202473,
Overlap Among States at Different Temperatures in the SK Model.
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Experiment 1: Memory and Chaos Effects in Spin Glasses

J. Hammann, et al : J.Phys.Soc.Jpn. 69 (2000)Suppl. A, 206-211.
(Saclay-Uppsala experiments, 1992)

e Temeprature cycling experiment

8 L}
; { ~L _ti ts
e Rejuvenation(Chaos) effect: nal E

long relaxation process at 77 does not play 2tk =
any role for the relaxation at a different Je T me at12K (min)
temperature. . T=12K._'-1__j_=__1m<| 21

j ey ----IMHG ;
The ordered states seem to depend on ; b _thz""""“'--u_glﬂ ook
temperature. — [emperature Chaos?? 0 400

800
age (min)

¢ Memory efFeCt: fig. 7. CdCry.7In0.3S4 spin glass (Ty = 16.7K): effect of a neg-

The system keeps information that relaxation ative temperature cycling 12K— > 10K— > 12K on the time
dependence of x” (f=0.01Hz). The inset shows the relaxation

has previously been done during the interval measured during t3 plotted in continuation of the initial relax-
ation during ¢1 (the solid line is a relaxation at 0.727, without

t1 at Tl. temperature cycling).
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Our strategy: Eigenmode Analysis of susceptibility matrix

e Conventional approach: Overlap between two temperatures 77 and 15 = T} +07'.

— TAP solution (equation of states) in mean-field models:

q/<T17 T2> =

1
N ; m; (Th)m;(15) )

— MC simulation:

2 _ 1 2
¢ (T, Ty) = <<N;Si(T1)SZ-(T2)> >T )

Jf

e Our approach: Eigenmodes of the susceptibility matrix and their temperature

dependence.
02 0
Xij = g F(Uhi})] - =555 = B(SiS))
iUl h=0 i h=0
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Our strategy (2): Eigenmode Analysis of susceptibility matrix

STEP 1: Monte Carlo Simulation

e Perform MC simulation
— use the extended ensemble method to avoid extremely slow relaxation in
random systems.
+ Multicanonical MC (Berg—Neuhaus)
« Simulated tempering (Marinari—Parisi)
+ Exchange MC (Hukushima—Nemoto, Parallel tempering)

e Generate M spin configurations = {S}}, {S?},{S?}, .-, {SM}

STEP 2: Multivariate analysis of the simulation data

e Eigenmode analysis = Principal component analysis (PCA)
e Calculate Susceptibility matrix (or Hamming distance matrix)

Cij =5 S0 (S = 5;)(S% —S;) with §; = 4> S
e diagonalize the matrix
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Multivariate Analysis of Simulation data

e theory: Eigenmode of the susceptibility matrix in spin glasses.

— A. J. Bray and M. A. Moore, J. Phys. C15 (1982) L765.

e Numerical Examination

— Nemoto-Yamada, Bussei-Kenkyu (Kyoto) 74 (2000) 122.
— J. Sinova, G. Canright and A. H. MacDonald, Phys. Rev. Lett. 85 (2000) 2609.

e Cluster analysis of the simulation data

— E. Domany, G.Hed, M. Palassini and A.P.Young, Phys. Rev. B 64 (2001) 224406.

e Finite mixture,

— Iba-Hukushima, Prog. Theor. Phys. 138 (2000) 462.
— Marinari-Martin-Zuliani, cond-mat/0103534

e Protein, ... PCA
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Application to the SK model 1

Temp. dep of 1st Eigenvalue

Temp. dep of 2nd Eigenvalue

)\1/N VS T/J
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e Phase transition : T/
SG transition is characterized by %Tr(j — 1

— disordered phase : A ~ O(1)
— ordered phase : A ~ O(N)

Statistical-Mechanical
Approach 10 Probabilistic
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The next largest eigenvalue also has a
finite contribution even in N — oo.
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SG and Ferromagnetic phase in the SK model with v = 128

Eigenvector of the largest eigenvalue at T'/J = 0.5 and Jy =0 and Jy = 1.2.
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Eigenvector corresponds
to the ordering pattern.

e SG phase:
vector

random

e F Phase : uniform

Ferromagnetic phase has
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i T L eigenmodes.
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Application to the SK model 3

e PCA plot

Histogram of the MC

simulation data  projected
onto;

— X axis:
the largest eigenvector
ot =37, Ste;”
— y axis:
the next largest eigenvector
yh =3, Si'ei™

e Free-energy landscape?
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...a spin-glass model in finite dimensions.
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Temp. dep. of eigenmode in SG phase : the first eigenvector

4 dimensional £J Ising EA Model using the dual trick method

Overlap between two eigenvectors

TTO(AT) = % Dy e(To)e(To+AT)
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The overlap decreases with increasing L.

Finite size scaling
TTO(ATv L) = F(L/ L) with
LOVI = ATl/C
1.05 | |
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in the thermodynamic limit(L — o).

—

Eigenmode (Ordering pattern) significantly depends on temperature.
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The second eigenvector...

4d 4+ J Ising EA Model using the dual trick method

The second eigenvalue is also of
order NV, namely Extensive.

Overlap of 1st eigenvec.

Red Overlap of 2nd one.
one adjustable parameter for the

scaling axis.
e the same scaling function.

e And, the exponent ( ~ 1.3
agrees with that of bond
perturbation in the same

model (M. Ney-Nifle, PRB57,
492(1998)).

StalislicaI-Menhanical
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Finite size scaling
r1y (AT, L) = F(L/Low) with Loy = ATY¢
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About the scaling function...

e The overlap 7(AT) is unity when

AT =0. Scaling function 1 — r vs L°AT
e According to Bray-Moore argument, 0.3 —
the deviation from unity, 1 — r(AT) 0s | i i |
is due to a droplet excitation with size 2l ﬁ i
L, whose probability by entropy gainis Mﬁ
expressed as o 05 F @ﬁﬁh
L ATL%/2 _ ISAT o1 | ki
p YLV T iyt
e When the droplet size is of order of the . W&%“@
system size, the deviation of r(AT) °0 2 4 6 8 1 12 u
becomes O(1). Thus, AT
f(x) =1 — r(x) is linear in * = L°AT for
ISAT r < 1.
l—rocp= T
Wmﬁﬂ m;nﬁm“m 2003 Joint Workshop of HAYASH|BAR/jPF®us?CdSa:s; Ii?grr?\t/ltﬁ;”i
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Summary

e \We have investigated the fragility of the spin glass state in four dimensions :

— from an new view point, which is temperature dependence of eigenmode of
the susceptibility matrix (=PCA).

— Using the finite-size scaling, the eigenmode is found to be very sensitive to
the temperature change, suggesting Temperature Chaos

— The value of the scaling exponent ( is consistent with that obtained by other
perturbation.

— Against ‘the against ...’
« F. Krzakala and O .C .Martin, cond-mat/0203449, Eur. Phys. J. B28 (2002) 199.
“Chaotic temperature dependence in a model of spin glasses”.
« K. Hukushima and Y. Iba, cond-mat/0207123.
« T. Aspelmeier, A. J. Bray, M. A. Moore, cond-mat/0207300, PRL89,(2002) 197202.
“Why temperature chaos in spin glasses is hard to observe”
« T.Rizzo and A. Crisanti, PRL 90, (2003) 137201.
“Chaos in Temperature in the SK model”... 9th order perturbation theory.
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